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This study aimed to evaluate in silico models based on quantum chemical (QC) descriptors
derived using the electronegativity equalization method (EEM) and to assess the use of QC
properties to predict chemical metabolism by human UDP-glucuronosyltransferase (UGT)
isoforms. Various EEM-derived QC molecular descriptors were calculated for known UGT
substrates and nonsubstrates. Classification models were developed using support vector
machine and partial least squares discriminant analysis. In general, the most predictive models
were generated with the support vector machine. Combining QC and 2D descriptors (from
previous work) using a consensus approach resulted in a statistically significant improvement
in predictivity (to 84%) over both the QC and 2D models and the other methods of combining
the descriptors. EEM-derived QC descriptors were shown to be both highly predictive and
computationally efficient. It is likely that EEM-derived QC properties will be generally useful
for predicting ADMET and physicochemical properties during drug discovery.

Introduction
Quantum chemical (QC) descriptors have proven

useful for the prediction of many molecular biological
and physicochemical properties of interest to the phar-
maceutical industry. These include molecular toxicity,
absorption, metabolism, receptor binding, octanol/water
partition coefficients, stability, pKa, and chromato-
graphic retention times.1-13

Numerous types of descriptors have been developed
to capture QC properties. Prominent among these are
atomic charges, polarizability, molecular orbital ener-
gies, superdelocalizabilities, dipole moments, frontier
orbital densities, and molecular quantum similarity
measures.5-7,14 While global QC descriptors character-
izing the molecule as a whole generally have wider
applicability, atomic or local properties (such as atomic
charges or frontier orbital electron densities) are often
useful for studying structural analogues and under-
standing regioselectivity.5,8,15,16 Recently, an electrone-
gativity equalization method (EEM) has been described
for the fast connectivity- and geometry-dependent cal-
culation of density functional theory (DFT) molecular
and atomic properties.17,18 These properties include
molecular equalized electronegativity, molecular hard-
ness, molecular softness, atomic charges, atomic Fukui
functions, and atomic softness.17,18 EEM generally al-
lows calculation of these QC properties in a fraction of
the time required for ab initio and semiempirical
approaches. For example, atomic charges may be cal-
culated in the order of a million molecules of reasonable
size in 1 h using a personal computer.17,18 This poten-

tially allows for QC properties to be used as part of high-
throughput in silico screens in drug discovery programs.

Global QC indices describe properties of the whole
molecule. Molecular equalized electronegativity refers
to the change in energy of the molecule as the number
of electrons in the systems is perturbed and thus can
be approximated by the average of the molecular ioniza-
tion energy and electron affinity.19,20 Simplistically,
molecular electronegativity can be considered as a
measure of the tendency of a molecule to attract
electrons. The hardness global reactivity index is de-
fined by the change in molecular electronegativity with
perturbation in electron number and provides an indi-
cator of overall stability of the system.21,22 The final
global reactivity descriptor, molecular softness, is in-
versely related to the molecular hardness.19,20,22

Local QC indices describe properties of atoms in a
molecule. The atomic charge provides a local reactivity
index that is defined as the difference between the
nuclear charge and the total (inner and valence) electron
density attributed to the atom. Whereas a neutral,
isolated atom has a net charge of zero, the formation of
bonds in a molecule leads to a redistribution of the
valence electron density (governed by the electronega-
tivity of the atoms). This usually results in areas of
charge imbalance (between the positive charge associ-
ated with the nucleus and the immediately surrounding
electron charge) within the molecule.17 The Fukui
function is a space distribution that describes the
change in electron density as the total number of
electrons in the molecular system is altered.15,21,22 This
indicates how incoming or outgoing electrons are redis-
tributed in various regions of the molecule. As such, the
atom-condensed Fukui function (the Fukui function
integrated over the region attributed to an atom) is
useful as an indicator of relative atomic susceptibility
to electrophilic or nucleophilic attack.15,21,22 Softness is
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the Fukui function scaled by the molecular hardness.19

Consequently reactivity values may be compared be-
tween atoms in different molecules using the atom-
condensed softness.

Conjugation with glucuronic acid, derived from the
cofactor UDP-glucuronic acid, is an essential phase II
clearance mechanism for drugs from all therapeutic
classes.23 Moreover, glucuronidation serves as an elimina-
tion mechanism for many endogenous compounds (e.g.,
bilirubin, bile and fatty acids, steroid hormones), dietary
chemicals, and environmental pollutants and facilitates
the excretion of the products of phase I metabolism.
Glucuronidation reactions are catalyzed by the enzyme
UDP-glucuronosyltransferase (UGT). Consistent with
its broad substrate profile, UGT exists as a superfamily
of enzymes. Sixteen functional human UGT isoforms
have been identified to date, and all but one of these
(UGT2A1, an enzyme expressed in nasal epithelium)
have been classified in just two subfamilies (UGT1A and
UGT2B) based on amino acid sequence identity.24 The
individual isoforms exhibit distinct, but overlapping,
substrate selectivities and differ in terms of regulation
of expression and drug-drug interactions.24

Although structure-function studies involving UGT
were first reported over 50 years ago,25 it is only recently
that the physicochemical and structural features influ-
encing the metabolism of diverse chemicals by indi-
vidual isoforms have been explored.25-30 Notably, three
pattern recognition methodologies were compared for
their ability to classify chemicals as substrates or non-
substrates for 12 human UGT isoforms, using simple
2D chemical descriptors.29 In general, the support vector
machine methodology was found to generate the most
predictive models.29 While UGT 1A3, 1A4, 1A6, 1A7,
1A9, 1A10, 2B4, and 2B17 were predicted well (>75%
test set predicted correctly), scope remained for improve-
ment particularly with the remaining isoforms. Further-
more, it was unclear whether the suboptimal prediction
of glucuronidation for these isoforms was due to the
complex chemical data sets, insufficient data, or noisy
data. Additionally, physicochemical interpretation of the
models generated with the 2D descriptors was not
possible because of the nature of chemical properties/
descriptors and pattern recognition methods used.

Subsequently, a multiple pharmacophore methodol-
ogy was designed, implemented, and applied to deter-
mine structural features associated with substrates and
nonsubstrates of human UGT isoforms.30 The models
generated using this approach were more interpretable
but capable of modeling only UGT 1A6, 1A7, 1A9, and
2B4 well. Pharmacophore models generally only account
for the three-dimensional distribution of simple chemi-
cal features such as hydrogen bond donors and acceptors
and hydrophobic regions.31 Thus, it was anticipated that
a more accurate representation of the electrostatic
distribution of the molecule would likely improve pre-
dictivity for the suboptimally modeled isoforms.24

UGT catalyzes the conjugation of lipophilic chemicals
containing a suitable acceptor functional group (typi-
cally -OH, -COOH, -NRx) with UDP-glucuronic acid
according to a second-order nucleophilic substitution
mechanism.32 This suggests that QC descriptors captur-
ing information on molecular and atomic nucleophilicity
and pKa may correlate well with metabolism by UGT.

Previous studies in rats using congeneric series of chem-
icals demonstrated that QC properties have a significant
influence on the extent of chemical glucuronidation in
vivo,2,33-35 further supporting this hypothesis.

This study aimed to assess the ability of EEM-derived
QC descriptors to generate predictive structure-activity
relationships. The second aim was to explore the use of
electronic properties to improve the prediction of meta-
bolic reactions catalyzed by 12 human UGT isoforms.

Materials and Methods
Data Sets. As described in previous work,29,30 12 isoform-

specific data sets of substrates and nonsubstrates for each
UGT isoform, ranging in size from 50 to 250 chemicals, were
collated from the literature. Data were generated from assays
utilizing a single recombinant UGT isoform.

Assessment of Models. To assess the ability of the models
generated to predict the metabolism of new chemicals (gen-
eralization performance), 30% of each data set was randomly
chosen as the test set. The remaining 70% of chemicals were
used to generate the models. The same training and test sets
were used as described in previous work,29,30 allowing for
performance comparison of the two methods described here
with models generated from generic 2D chemical descriptors
and pharmacophores. The test set was not used in any way to
influence the training or selection of the models. Indeed, the
test set was predicted and compared against the known
experimental result only after the models were completely
defined. Unless defined otherwise, the generalization perfor-
mance of the models was expressed as the percent of test set
chemicals that was correctly predicted (both substrates and
nonsubstrates).

QC and 2D Descriptors. Chemical structures for the 523
chemicals in the 12 data sets were constructed using Chem-
Draw (CambridgeSoft, MA). Three-dimensional structures
were optimized by minimizing the universal force field empiri-
cal energy, as implemented in Cerius2 (Accelrys, CA). Equal-
ized molecular electronegativity, molecular hardness, molec-
ular softness, atomic charge, atomic softness, and atomic Fukui
function values were calculated for each chemical using in-
house software implementing the EEM algorithm outlined in
Bultinck et al.17,36

The EEM procedure is based on the electronegativity
equalization principle. This asserts that when molecules are
formed, atoms with initially different electronegativities com-
bine in such a way that the electronegativities of the molecular
atoms become equal, thereby yielding the molecular equalized
electronegativity.22,36 Electron transfer takes place from atoms
with lower electronegativity to those with higher electrone-
gativity, the latter reducing their electronegativity value and
the former increasing it.22 Applying EEM to an n-atom
molecule, the atomic charges and the molecular electronega-
tivity are determined by solving a set of n + 1 linear
equations.17 By equilibration of the individual atomic elec-
tronegativities to the molecular electronegativity, n of these
equations are obtained. The remaining equation comes from
constraining the sum of the molecular charge to the total
molecular charge.17 The Fukui function and local softness are
calculated in a similar manner.17 The parametrization of this
method is currently limited to chemicals containing only H,
C, O, N, and F atoms.17 Thus, chemicals with atoms other than
these were excluded from the data sets used in this study.
Molecular descriptors capturing the distribution of the atomic
QC properties (Table 1) were subsequently calculated for each
chemical using in-house software written in Python.

The 2D descriptors used in this study were identical to those
described in Sorich et al.29 Briefly, the 67 2D descriptors
calculated comprised counts of simple chemical fragments
(atom types,37 functional groups, and rings), eigenvalue de-
scriptors,38 and connectivity indices (vertex degree and valence
vertex degree).39 These were originally chosen on the basis of
simplicity, ease of calculation, and diverse representation of
chemical properties. The 2D models described here differ from
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those previously reported29 in the following ways: (a) variable
selection was not used; (b) only chemicals that were param-
etrized for EEM were included.

Descriptor Preprocessing. Prior to model generation with
the pattern recognition methods, data were processed to
improve prediction performance. Descriptors containing mini-
mal variance were excluded. Specifically, any descriptor where
90% or more of the values were the same across the data set
was considered redundant. All remaining descriptors were
scaled to set the mean value to zero and the variance to 1,
allowing all descriptors to have equal weighting in the training
process.

Support Vector Machine (SVM). Classification models
were generated using the ν-SVM methodology.40 Briefly, this
algorithm operates by fitting a hyperplane such that the
largest margin is formed between two classes of chemicals
while minimizing the classification errors. Nonlinearity in a
data set is accounted for with kernel functions, which map
the input vectors to some higher dimensioned space such that
a hyperplane can be found with reduced classification errors.41

The SVM models were generated using the LIBSVM imple-
mentation42 of the ν-SVM algorithm.40 For all the data sets,
the radial basis function kernel was used with the default
value of the γ parameter ()1/(number of descriptors)) and the
ν parameter set to 0.1.

Cluster Analysis-Genetic Algorithm-Partial Least
Squares Discriminant Analysis (Cluster-GA-PLSDA).
A second set of classification models were based on partial least
squares discriminant analysis. A combination of cluster analy-
sis and genetic algorithm optimization was used to choose a
small, diverse, and relevant subset of descriptors for the model.
The details of this algorithm are given in Sorich et al.30 This
method has the advantage that the models are interpretable,
providing the descriptors are interpretable.

Combining QC and 2D Models. With the aim of improv-
ing predictive ability, three different methods (“Maximum”,
“Combined”, and “Consensus”) were used to combine informa-
tion contained in the QC and 2D descriptors. The “Maximum”
method involved selecting either the 2D or the QC model for
each isoform based on which gave the maximum test set
performance. The “Combined” method involved regenerating
the models using the combined 2D and QC descriptors. Finally,
the “Consensus” method entailed determination of consensus
between the predictions of the QC and 2D models. When the
two models were in consensus, the chemical was predicted;
otherwise, the chemical was labeled as “uncertain”. A paired
t-test was used to compare the predictive ability of the best
method to all others.

Results
The predictive ability of the QC descriptors is dis-

played in Table 2. By use of the SVM methodology, 78%
of chemicals in the test sets were predicted correctly,
on average, compared to 73% for models generated with
cluster-GA-PLSDA. Statistical analysis of the data in
Table 2 using a paired t-test, indicated that there was
no statistically significant difference between the mean
predictive ability (p ) 0.08) of the two methods used to
discriminate substrates and nonsubstrates.

The test set results of the QC models generated by
the SVM method are presented in further detail in Table
3. On comparison of the test set prediction accuracies
to that expected by chance, the overall, substrate, and
nonsubstrate prediction accuracies were all found to be
highly statistically significant (p , 0.001, one-sided
paired t-test). On average, the substrates in the test sets
were predicted marginally better than the nonsub-
strates; however, this was not statistically significant
when measured with a paired t-test (p ) 0.31). There
was no significant (linear) correlation between the
number of chemicals in the data set (for each isoform)
and the percent of the test set predicted correctly (r )
-0.14, p ) 0.65).

The use of three different methods to combine infor-
mation in the 2D and EEM descriptors is explored in
Table 4. As shown in the “Combined” column, regener-
ating the models using the combination of both 2D and
QC descriptors does not improve performance. While the
“Maximum” method improved predictivity, the “Con-
sensus” method performed best. In fact, the “Consensus”
approach resulted in a statistically significant improve-
ment in predictivity over all other models (i.e., 2D or
QC descriptors alone and the “Combined” and “Maxi-
mum” methods of combining QC and 2D descriptors).
The breakdown of the “Consensus” model test set
predictions is elaborated in Table 5.

Table 6 displays the details of the models (>70% of
test set predicted correctly) generated with the cluster-
GA-PLSDA method using the EEM descriptors. These
models contained between one and five EEM descrip-
tors. The right-hand column details the relative contri-
bution of each descriptor in the model. The absolute
number indicates the relative size of the contribution,

Table 1. Quantum Chemical Molecular Descriptors

Equalized molecular electronegativity, molecular hardness, and molecular softness

Most positive and most negative charge on any atom and specific atoms (H, C, O, N, F)

Maximum charge separation between any atom and between atoms of the same element (H, C, O, N, F)

Sum of squares of charge of all atoms and atoms of the same element (H, C, O, N, F)

Mean of positive atomic charges, negative atomic charges and absolute atomic charges

Relative positive charge (max negative charge/sum of negative charges) and relative negative charge
(min negative charge/sum of negative charges)

Most positive and most negative atom-condensed Fukui function on any atom and specific atoms (H, C, O, N, F)

Most positive and most negative atom-condensed softness on any atom and specific atoms (H, C, O, N, F)

Table 2. Performance Comparison (Percentage of Compounds
Predicted Correctly) for QC Descriptors Using Two Pattern
Recognition Methods

UGT isoform SVM,a % cluster-GA-PLSDA,b %

1A1 85 68
1A3 89 71
1A4 83 85
1A6 67 71
1A7 79 74
1A8 77 61
1A9 80 64
1A10 80 70
2B4 83 83
2B7 64 71
2B15 67 72
2B17 80 80
average 78 73
median 80 71

a Support vector machine. b Cluster analysis-genetic algorithm-
partial least squares discriminant analysis.
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and the sign denotes how the descriptor influences the
likelihood of the chemical being a substrate. For ex-
ample, in the UGT1A3 model, as the maximum separa-
tion of charge between nitrogen atoms in the molecule
increases, the molecule becomes more likely to be a
nonsubstrate. Conversely, as the minimum charge of a
hydrogen atom in the molecule increases, the compound
is more likely to be a substrate. Furthermore, the
maximum nitrogen charge separation has a larger
influence than the minimum hydrogen charge.

Discussion
Predictive Capability of QC Descriptors. For 9

of the 12 isoforms modeled, the combination of QC
descriptors and SVM was able to produce models with
good predictivity (Tables 2 and 3). The average predic-
tive ability across the 12 isoforms was 78%, compared
to 76% using SVM with the 2D descriptors29 and 72%
using multiple pharmacophores.30 This indicates that
the descriptors based on the QC properties capture
information that is crucial to chemical glucuronidation
catalyzed by the various human UGT isoforms.

Cluster-GA-PLSDA Models. QSAR models are
generally generated for two reasons: prediction and
interpretation. In this paper we primarily describe a
system for building predictive models suitable for virtual
screening. The cluster-GA-PLSDA methodology was
also used to generate predictive models (Table 2).
However, distinct from the SVM models, such models
are linear and contain only a small number of descrip-
tors. Therefore, the combination of this method with
interpretable descriptors should generate models that
provide insight into the glucuronidation reaction. The
glucuronidation reaction is thought to proceed according
to a second-order nucleophilic substitution mechanism.32

It was originally anticipated that the descriptors con-
taining information on the softness and Fukui function
properties would be the most important predictors of
glucuronidation because these properties are related to
atomic nucleophilicity. However, the dominance of the

Table 3. Performance of Models Generated for Each UGT Isoform by Support Vector Machine Using QC Descriptors

% of test set
predicted correctly

UGT
isoform

no. of
chemicals
in data set

%
substrates

all
chemicals substrates

non-
substrates

1A1 174 39 85 81 88
1A3 156 76 89 94 67
1A4 156 55 83 78 94
1A6 161 41 67 72 64
1A7 65 40 79 57 92
1A8 104 78 77 95 40
1A9 176 65 80 86 67
1A10 147 50 80 86 74
2B4 131 31 83 75 87
2B7 196 65 64 73 36
2B15 125 42 67 60 71
2B17 53 45 80 70 100
average 137 52 78 77 73
median 152 48 80 77 73

Table 4. Percent of Test Set Predicted Correctly

2D,
%

QC,
%

Combined,
%

Maximum,
%

Consensus,
%

1A1 64 85 77 85 88
1A3 84 89 87 89 90
1A4 88 83 85 88 90
1A6 78 67 75 78 83
1A7 74 79 74 79 81
1A8 68 77 81 77 77
1A9 82 80 80 82 87
1A10 80 80 80 80 86
2B4 88 83 86 88 88
2B7 71 64 62 71 73
2B15 64 67 67 67 70
2B17 73 80 80 80 90
average 76 78 78 80 84
median 76 80 80 80 87
p valuea 0.002 0.001 0.001 0.002

a p value was determined by comparing the particular model
to the “Consensus” model using a paired t-test.

Table 5. Test Set Details of Consensus 2D QC Model

% of test set predicted correctly

UGT
isoform

all
chemicals substrates

non-
substrates

no.
uncertain

%
uncertain

1A1 88 83 91 19 36
1A3 90 97 57 4 9
1A4 90 85 100 6 13
1A6 83 69 95 16 31
1A7 81 60 91 3 16
1A8 77 100 33 5 16
1A9 87 91 79 9 16
1A10 86 89 83 8 18
2B4 88 82 90 2 5
2B7 73 86 42 14 25
2B15 70 70 71 9 25
2B17 90 83 100 5 33
average 84 83 78
median 87 84 86
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descriptors based on atomic charge suggests that mo-
lecular recognition of the substrate (in addition to
chemical reactivity of the substrate) is an important
determinant of chemical glucuronidation (Table 6).
Thus, the interplay of molecular recognition and chemi-
cal reactivity effects obfuscates the unambiguous inter-
pretation of the physicochemical roles of the descriptors.
It is likely that the application of local QC descriptors
to predict the site of glucuronidation will result in a
clearer understanding of the distinct chemical properties
influencing substrate binding and chemical reactivity.24

Some descriptors were found in more than one model,
that is, for more than one isoform. In all but one case,
the descriptors had a consistent effect (increased likeli-
hood of substrate vs nonsubstrate) in the different
models (Table 6). This may indicate the existence of
certain chemical features that consistently affect the
ability of chemicals to be glucuronidated by multiple
UGT isoforms.

Combination of 2D and QC Descriptors. Since the
SVM models generated with QC descriptors or 2D
descriptors resulted in good predictivity, the combina-
tion of both sets of descriptors was attempted. Regen-
erating the models using the combination of both
descriptors did not improve predictivity. This outcome
is probably a result of incorporating too many descrip-
tors for the limited data available. The optimal method
for combining 2D and QC descriptors in this situation
was found to be a consensus approach. According to this
approach, if the 2D and QC models do not agree with
each other, then the chemical is classified as “uncer-
tain”. By use of this approach, many of chemicals
previously predicted incorrectly by the 2D and/or QC
models were classified as “uncertain”, thereby signifi-
cantly improving the percent of test set chemicals
predicted correctly (see Table 4). As shown in Table 5,
both substrates and nonsubstrates are predicted sig-
nificantly better using the consensus method over the
2D and QC models in isolation. The disadvantage of this

method is that the glucuronidation of up to 30% of
chemicals cannot be predicted (i.e., labeled “uncertain”).

One important source of misclassification in the
models presented here is the number and distribution
of substrates and nonsubstrates in the training and test
sets. For an average sized data set (approximately 100
chemicals), there would only be about 30 molecules in
the test set. Similar arguments apply for the training
set with perhaps only 35 or so substrates to cover the
diversity of “substrate space”. Clearly, larger data sets
will produce better models. The current work suggests
that the paucity and noise of the data are probably the
most important factors affecting the model accuracy
rather than the desciptor efficiency.

It appears that the test sets of UGT2B7 and UGT2B15
are consistently predicted with lower accuracy than the
other UGT isoforms (Table 4). UGT2B7 is known for
its ability to metabolize chemicals of highly divergent
structure, and thus, the inferior test set prediction may
be a function of a more complex structure-activity
relationship. The reason underlying the inferior perfor-
mance of UGT2B15 in silico models is unclear.

Comparison with Previous Modeling of UGT
Using QC Descriptors. QC properties have been used
previously to predict aspects chemical metabolism by
UGT. In 1992, the relative conjugation of a congeneric
series of 14 substituted benzoic acids with glucuronic
acid and taurine in the rat was reported.2 Of the 39
primarily semiempirical molecular orbital derived QC
descriptors calculated for use in the study, the two most
important were found to be partial atomic charge meta
to the carboxylic acid and electrophilic superdelocaliz-
ability at the same position. Two later reports applied
the same methodology for classification of the metabolic
fate of other chemical classes. Urinary excretion of
sulfate and glucuronide conjugates of 16 substituted
phenols was investigated in the rat and classified using
a number of semiempirical QC descriptors.33 In addition
to classification, linear regression techniques were used

Table 6. Relative Contribution of Descriptors to the Cluster-GA-PLSDA Models

% of test set predicted correctly

UGT isoform all chemicals substrates nonsubstrates relative contribution of descriptor to model

1A3 71 75 56 max nitrogen charge separation (-64)
min hydrogen charge (+36)

1A4 85 91 75 max hydrogen charge (-38)
min atomic charge (-26)
max oxygen charge separation (-22)
max nitrogen charge (-8)
min oxygen charge (+5)

1A6 71 33 91 molecular softness (-55)
max nitrogen charge separation (-45)

1A7 74 71 75 max oxygen charge (-55)
molecular softness (-44)

1A10 70 86 57 min hydrogen charge (+100)
2B4 83 92 80 max carbon charge (-39)

mean absolute charge (+34)
max atomic charge (-16)
min nitrogen charge (+11)

2B7 71 76 57 max atomic softness (-44)
max nitrogen charge separation (+32)
carbon charge sums of squares (-24)

2B15 72 80 67 max oxygen softness (+39)
min hydrogen charge (+34)
max hydrogen softness (+28)

2B17 80 90 60 atomic charge sums of squares (-57)
max oxygen charge (-43)
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to derive models capable of quantifying the amount of
sulfate and glucuronide conjugates excreted in urine.
In a similar manner, the urinary excretion of glycine
and glucuronide conjugates of 24 substituted benzoic
acids was investigated in the rat.34 The HOMO (highest
occupied molecular orbital) energy, log P and electro-
philic superdelocalizability on the aromatic ring were
highlighted as important properties influencing chemi-
cal conjugation. The inclusion of a further 22 benzoic
acids helped highlight the importance of partial atom
charges.35 The current study extends the earlier work
by using the QC properties to predict glucuronidation
by individual UGT isoforms. This study is also dif-
ferentiated by the large and diverse data set of chemi-
cals used to train the models and the advanced pattern
recognition methodologies used. Furthermore, the QC
properties used here were calculated by a methodology
that is more computationally efficient by orders of
magnitude compared to the previously employed ab
initio or semiempirical methodologies. Thus, the work
reported here provides the basis for an efficient high-
throughput screening method to predict chemical glu-
curonidation.

Importance of EEM in Drug Discovery in Silico
Screening. To the best of the authors’ knowledge, this
is the first study reporting the application of EEM-
derived DFT chemical properties in a structure-activity
relationship. While QC properties have shown great
utility in many QSAR studies, their use in the phar-
maceutical industry has been limited by the associated
computational overhead. With the growing need to
generate in silico models capable of predicting very large
numbers of structurally diverse chemicals, QC proper-
ties have been largely ignored. Because of the recent
development of EEM QC properties, the application of
quantum chemistry to in silico screening in drug
discovery programs is now realistic.18 Furthermore, this
study demonstrates that the EEM calculated QC prop-
erties contain useful information for the prediction of
biochemical properties such as chemical metabolism.

The main limitation of the EEM method is that only
H, C, N, O, and F are currently parametrized. This
resulted in the exclusion of chemicals containing other
elements from the analyses described here. It is common
for new methods requiring parametrization to initially
restrict the basis set to cover only the most common
cases. Generally, if the method is useful, the range of
atom types parametrized increases quickly, and it is
expected that this will be the case with the EEM
methodology.

QC Properties for the Prediction of Site of
Glucuronidation. QC properties have been used pre-
viously to predict “site of reactivity” for cytochrome P450
substrates with reasonable success.3 The prediction of
glucuronidation regioselectivity, and hence the structure
of the metabolite(s), would be of significant value
because of the altered toxicological and pharmacological
effects of metabolites and the challenge of characterizing
metabolite structure in a high-throughput setting.
Furthermore, it is likely that in the absence of regiose-
lectivity data for a large number of chemicals it will
prove to be very difficult to combine understanding of
structural/steric (e.g., from pharmacophore analyses)

and electronic (this study) determinants of chemical
binding and metabolic turnover by UGT.

This study aimed to discriminate between substrates
and nonsubstrates of each human UGT isoform. Since
the molecular descriptors derived from the QC proper-
ties were effective in differentiating substrates from
nonsubstrates, it is very likely that the QC properties
calculated with EEM (charge, softness, and/or Fukui
function) are important determinants of glucuronidation
likelihood at nucleophilic sites of the molecule. Indeed,
the atom-based nature of many QC properties calculated
using EEM makes this method well suited for prediction
of regioselectivity.

Conclusions
In silico models were built to predict chemical glucu-

ronidation based on three global (equalized electrone-
gativity, molecular hardness, and molecular softness)
and three local (atomic charge, Fukui function, and
atomic softness) QC properties calculated with EEM.
This method allows calculation of these properties at a
fraction of the computational expense of other ap-
proaches such as ab initio and semiempirical methods.
Consequently, QC properties may be used for in silico
screening in drug discovery programs. This study is the
first reported use of EEM-derived QC descriptors in a
structure-activity relationship. The results presented
here indicate that EEM QC descriptors can be used to
generate highly predictive and computationally efficient
in silico models.

The use of descriptors derived from QC properties was
explored for the prediction of substrates and nonsub-
strates of UGT isoforms. Models built with SVM dem-
onstrated a small improvement in predictivity over
previous attempts using 2D chemical descriptors. Mod-
els generated using the cluster-GA-PLSDA methodol-
ogy resulted in partially interpretable models of slightly
inferior predictive ability. By combination of the 2D and
QC models with a consensus approach, significant
improvement in overall, substrate, and nonsubstrate
predictivity was possible. This model is capable of
predicting substrates of UGT isoforms with approxi-
mately 84% success.
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